Звоните! 
 (926)274-88-54 
 Бесплатная доставка. 
 Бесплатная сборка. 
Ассортимент тканей

График работы:
Ежедневно. С 8-00 до 20-00.
Почта: soft_hous@mail.ru
Читальный зал -->  Промышленная электроника 

1 2 3 [ 4 ] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


заряд иона примеси, и слой кристалла остается электрически нейтральным. В случае прихода в данный слой электрона из другого слоя и рекомбинации его с дыркой неподвижные заряды ионов примеси создают нес компенсированный отрицательный объемный заряд.

Примесь, атомы которой захватывают электроны соседних атомов, называют акцепторной. Введение акцепторной примеси приводит к образованию избыточного числа дырок, концентрация которых значительно превышает концентрацию электронов, возникающих вследствие разрушения ковалентных связей полупроводника: Рр>Пр. В электрическом токе, возникающем в таком полупроводнике, преобладает дырочная составляющая.

Полупроводник с преобладанием дырочной электропроводности называют полупроводником р-типа. В таком полупроводнике дырки являются основными носителями заряда, а электроны - неосновными носителями заряда.

Энергетическая диаграмма полупроводника р-типа представлена на рис. 1.7, б. Локальные уровни энергии атомов акцепторной примеси (показаны штрихами) расположены в запрещенной зоне вблизи валентной зоны исходного полупроводника. Все эти уровни свободны при температуре абсолютного нуля, а число их соответствует количеству атомов примеси в кристалле. Величина энергии Диа равна разности между энергией акцепторного уровня и верхнего уровня валентной зоны. Она, как и величина AWa для полупроводников п-типа, мала и составляет 0,01 - 0,07 эВ в зависимости от материала исходного полупроводника и примеси. Поэтому при комнатной температуре все акцепторные уровни энергии оказываются занятыми электронами, которые переходят на них из валентной зоны. В результате в валентной зоне появляется большое количество вакантных уровней - дырок.

Таким образом, в примесных полупроводниках основные носители заряда появляются главным образом за счет атомов примеси, а неосновные - за счет резрушения ковалентных связей и вызванной этим генерации пар носителей заряда. Концентрация основных носителей заряда превышает на два-три порядка концентрацию неосновных носителей. При этом удельная электрическая проводимость примесного полупроводника превышает удельную проводимость собственного полупроводника в сотни тысяч раз.

Кроме кремния и германия в качестве исходных полупроводниковых материалов в промышленности применяют арсенид галлия, селен, оксиды, карбиды и другие химические соединения элементов / и V групп, а также и VI групп Периодической системы Менделеева.

1.1.4. Дрейфовый и диффузионный токи в полупроводниках

Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия).

Если электрическое поле отсутствует и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет.

Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле; движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки - к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси.

Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток - дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.

Средняя скорость носителей заряда в электрическом поле прямо пропорциональна напряженности электрического поля:

v = р£.

Коэффициент пропорциональности \х называют подвижностью электронов \1п или дырок рр. Свободные электроны движутся в пространстве между узлами кристаллической решетки, а дырки - по ковалентным связям, поэтому средняя скорость, а следовательно, и подвижность электронов больше, чем дырок. У кремния подвижность носителей заряда меньше, чем у германия.

В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа - дырками, а в полупроводниках п-типа - электронами.

При неравномерной концентрации носителей заряда вероятность их столкновения друг с другом больше в тех слоях полупроводника, где их концентрация выше. Совершая хаотическое



тепловое движение, носители заряда отклоняются в сторону, где меньше число столкновений, т. е. движутся в направлении уменьшения их концентрации.

Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, - диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.

Степень неравномерности распределения носителей заряда характеризуется градиентом концентрации; его определяют как отношение изменения концентрации к изменению расстояния, на котором оно происходит. Чем больше градиент концентрации, т. е. чем резче она изменяется, тем больше диффузионный ток.

Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается.

Контрольные вопросы

1. Что называют энергетическим уровнем и энергетической диаграммой? Какие энергетические зоны содержит энергетическая диаграмма?

2. Чем отличаются энергетические диаграммы металлов, полупроводников и диэлектриков?

3. Что представляет собой кристаллическая структура кремния и германия?

4. Объясните механизм собственной электропроводности полупроводника.

5. Объясните механизм примесной электропроводности полупроводников п-типа и р-типа.

6. Чем отличаются дрейфовый и диффузионный токи в полупроводнике?

Глава 1.2. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД

1.2.1. Электронно-дырочный переход при отсутствии внешнего напряжения

Электронно-дырочный переход, или, сокращенно, р-п переход, - это тонкий переходный слой в полупроводниковом материале на границе между двумя областями с различными типами электропроводности: одна - п-типа, другая - р-типа.

Электронно-дырочный переход благодаря своим особым свойствам является основным элементом многих полупроводниковых приборов и интегральных микросхем. Наряду с.р-п переходами в полупроводниковой технике используются и другие виды электрических переходов, например металл-полупроводник, а также

переходы между двумя областями полупроводника одного типа, отличающимися концентрацией примесей, а значит, и значениями удельной проводимости: электронно-электронный (п-п+ переход) и дырочно-дырочный (р-р+ переход). Знак плюс относится к слою с большей концентрацией основных носителей заряда.

Электронно-дырочный переход получают в едином кристалле полупроводника, вводя в одну область донорную примесь, а в другую - акцепторную. Атомы примесей при комнатной температуре оказываются полностью ионизированными. При этом атомы акцепторов, присоединив к себе электроны, создают дырки (получается р-область), а атомы доноров отдают электроны, становящиеся свободными (создается п-область) (рис. 1.8,а)!

р-п переход

.00 h


L Неосновные носители заряда


Рис. 1.8. Электронно-дырочный переход при отсутствии внешнего напряжения: а - двухслойная р-п структура полупроводника; б - распределение концентраций носителей заряда; в - распределение неподвижных объемных зарядов доноров (-f) и акцепторов (-); г - потенциальный барьер в р-п переходе

Для простоты примем концентрации основных носителей заряда в обеих областях одинаковыми. Такой р-п переход называют симметричным:

Рр = Пп,

где Рр - концентрация дырок в р-области; п - концентрация электронов в п-области.

В каждой области кроме основных носителей заряда имеются неосновные носители, концентрация которых значительно меньше, чем основных:

Ря<п и Пр<рр,



где Рп - концентрация дырок в -области; Пр - концентрация электронов в р-области.

Распределение концентраций основных и неосновных носителей заряда в двухслойной структуре показано на рис. 1.8,6, из которого видно, что на границе двух областей возникает разность концентраций одноименных носителей заряда. Одни и те же носители заряда в одной области являются основными, а в другой - неосновными, так что дырок в р-области гораздо больше, чем в -области, и наоборот, электронов в п-области значительно больше, чем в р-области. Разность концентраций приводит к диффузии основных носителей заряда через границу между двумя областями. Дырки диффундируют из р-области в п-область, а электроны - из п-области в р-область. Попадая в п-область, дырки рекомбинируют с электронами, и по мере их продвижения вглубь концентрация дырок уменьшается. Аналогично электроны, углубляясь в р-область, постепенно рекомбинируют там с дырками, и концентрация их уменьшается.

Диффузия основных носителей заряда через границу раздела р- и п-областей создает ток диффузии в р-п переходе, равный сумме электронного и дырочного токов:

диф = рдиф ~\~ /пдиф-

Направление диффузионного тока совпадает с направлением диффузии дырок.

Уход основных носителей заряда из слоев вблизи границы в соседнюю область оставляет в этих слоях нескомпенсированный неподвижный объемный заряд ионизированных атомов примеси: уход электронов - положительный заряд ионов доноров в п-об-ласти, а уход дырок - отрицательный заряд ионов акцепторов в р-области (рис. 1.8, а, в). Эти неподвижные заряды увеличиваются еще и за счет рекомбинации основных носителей заряда с пришедшими из соседней области носителями заряда противоположного знака.

В результате образования по обе стороны границы между р- и п-областями неподвижных зарядов противоположных знаков в р-п переходе создается внутреннее электрическое поле, направленное от п-области к р-области. Это поле препятствует дальнейшей диффузии основных носителей заряда через границу, являясь для них так называемым потенциальным барьером. Его действие определяется высотой потенциального барьера ф, измеряемой в электрон-вольтах (рис. 8, г). В результате появления потенциального барьера диффузионный ток уменьшается. Преодоление потенциального барьера возможно только для основных носителей, обладающих достаточно большой энергией.

Слой, образованный участками по обе стороны границы, где выступили неподвижные заряды противоположных знаков, яв-

ляется переходным слоем и представляет собой собственно р-п переход. Этот слой, из которого уходят подвижные носители заряда, называют обедненным слоем. Он обладает большим удельным сопротивлением.

Потенциальный барьер, уменьшая диффузию основных носителей заряда, в то же время способствует переходу через границу неосновных носителей. Совершая тепловое хаотическое движение, неосновные носители заряда попадают в зону действия электрического поля и переносятся им через р-п переход. Движение неосновных носителей заряда под действием внутреннего электрического поля создает в р-п переходе дрейфовый ток, равный сумме электронной и дырочной составляющих:

др - рдр ~1~ пдр-

Ток, созданный неосновными носителями заряда, очень мал, так как их количество невелико. Этот ток носит название теплового тока /т, поскольку количество неосновных носителей заряда зависит от собственной электропроводности полупроводника, т. е. от разрушения ковалентных связей под действием тепловой энергии. Направление дрейфового тока противоположно диффузионному.

При отсутствии внешнего напряжения устанавливается динамическое равновесие, при котором уменьшающийся диффузионный ток становится равным дрейфовому: /д ф = /др, т. е. ток через р-п переход равен нулю. Это соответствует определенной высоте потенциального барьера фо.

Установившаяся высота потенциального барьера фо в электрон-вольтах численно равна контактной разности потенциалов Lk в вольтах, создаваемой между нескомпенсированными неподвижными зарядами противоположных знаков по обе стороны границы: фо =

В состоянии равновесия р-п переход характеризуется также шириной /о.

Величина фо зависит от температуры и материала полупроводника, а также от концентрации примеси. С повышением температуры высота потенциального барьера уменьшается. При комнатной температуре для германия фо = 0,3-0,5 В, для кремния фо = 0,6-0,8 В.

Рассмотренный симметричный р-п переход имеет одинаковую ширину частей запирающего слоя по обе стороны границы раздела. На практике чаще встречаются структуры с неодинаковой концентрацией донорной и акцепторной примесей. В этом случае р-п переход называют несимметричным.

В несимметричном р-п переходе концентрация примеси в одной из областей на два-три порядка больше, чем в другой.



1 2 3 [ 4 ] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40



ООО «Мягкий Дом» - это Отечественный производитель мебели. Наша профильная продукция - это диваны еврокнижка. Каждый диван можем изготовить в соответствии с Вашими пожеланияи (размер, ткань и материал). Осуществляем бесплатную доставку и сборку.



Звоните! Ежедневно!
 (926)274-88-54 
Продажа и изготовление мебели.


Копирование контента сайта запрещено.
Авторские права защищаются адвокатской коллегией г. Москвы
.