Звоните! 
 (926)274-88-54 
 Бесплатная доставка. 
 Бесплатная сборка. 
Ассортимент тканей

График работы:
Ежедневно. С 8-00 до 20-00.
Почта: soft_hous@mail.ru
Читальный зал -->  Изменение энтропии 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 [ 20 ] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

4, ибо по линии 2-3 подводится болыле теплоты qu чем по линии 2-3, при том же количестве отведенной в процессе 4-I теплоты qi. При этом Гг и Тз больше, чем соответственно Гг и Тз.

Дело в том, что с увеличением Гз возрастает эксергия рабочего тела перед турбиной ез = Ср (Гз - Го) - Го (хз - Sa) (см. формулу (5.31)1, т. е. уменьшаются потери эксергии при сгорании, поскольку эксергия исходного топлива постоянна (равна теплоте его сгорания). Это и увеличивает КПД цикла.

Максимальная температура газов перед турбиной ограничивается жаропрочностью металла, из которого делают ее элементы. Применение охлаждаемых лопаток из специальных материалов позволило повысить ее до 1400-1500 °С в авиации (особенно на самолетах-перехватчиках, где ресурс двигателя мал) и до 1050-1090 С в стационарных турбинах, предназначенных для длительной работы. Непрерывно разрабатываются более надежные схемы охлаждения, обеспечивающие дальнейшее повышение температуры. Поскольку она все же ниже предельно достижимой при горении, приходится сознательно идти на снижение температуры горения топлива (за счет подачи излишнего количества воздуха). Это увеличивает эксергетические потери от сгорания в ГТУ иногда до 40 %.

Газы выбрасывают из турбины с температурой Г4>Г Го. Следовательно, эксергия рабочего тела ез, которой мы располагаем перед турбиной, используется также не полностью; потери эксергии с уходящими газами могут доходить до 10 %. Поэтому КПД ГТУ оказывается пока еще ниже, чем ДВС.

Не имея деталей с возвратно-поступательным движением, газовые турбины могут развивать значительно большие мощности, чем ДВС. Предельные мощности ГТУ сегодня составляют 100- 200 МВт. Они определякзтся высотой лопаток, прочность которых должна выдержать напряжения от центробежных усилий, возрастающих с увеличением их высоты и частоты вращения вала. Поэтому газовые турбины применяются прежде всего в качестве мощных двигателей

в авиации и на морском флоте, а также в маневренных стационарных энергетических установках.

Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется а этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры. Часто используют авиационные двигатели, выработавшие свой ресурс.

В энергетике газовые турбины иногда используют для привода воздуходувок, нагнетающих воздух в топку котла, работающую под давлением. Для этого продукты сгорания, охлажденные в котле до необходимой температуры, направляются в турбину, сидящую на одном валу с воздуходувкой, и расширяются в ней до атмосферного давления, совершая работу.

НА. ЦИКЛЫ ПАРОТУРБИННЫХ УСТАНОВОК

Современная стационарная теплоэнергетика базируется в основном на паровых теплосиловых установках. Продукты сгорания топлива в этих установках являются лишь промежуточным теплоносителем (в отличие от ДВС и ГТУ), а рабочим телом служит чаще всего водяной пар.

Циклы Карно и Ренкина насыщенного пара. Регенерация теплоты. Цикл Карно насыщенного пара можно было бы осуществить следующим образом (рис. 6.6). Теплота от горячего источника подводится при [ЮСТОЯННОЙ температуре Т\ по линии .5-1, в результате чего вода с параметрами точки 5 превращается в сухой насыщенный пар с параметрами точки /. Пар адиабатно расширяется в турбине до температуры




Рис. 6.6. Циклы Карно и Ренкина насыщенного водяного пара в Т, s-диаграмме

Ti, совершая техническую работу 1-,е% и превращаясь во влажный пар с параметрами точки 2. Этот пар поступает в конденсатор, где отдает теплоту холодному источнику (циркулирующей по трубкам охлаждающей воде), в результате чего его степень сухости уменьшается от Xi до хъ Изотермы в области влажного пара являются одновременно и изобарами, поэтому процессы 5-1 и 2-2 протекают при постоянных давлениях р\ и р2. Влажный пар с параметрами точки 2 сжимается в компрессоре по линии 2-5, превращаясь в воду с температурой кипения. На практике этот цикл не осуществляется прежде всего потому, что в реальном цикле вследствие потерь, связанных с неравновесностью протекающих в нем процессов, на привод компрессора затрачивалась бы большая часть мощности, вырабатываемой турбиной.

Значительно удобнее и экономичнее в реальном цикле конденсировать пар до конца по линии 2-3, а затем насосом увеличивать давление воды от р2 до р\ по линии 3-4. Поскольку вода несжимаема, точки 3 и 4 почти совпадают, и затрачиваемая на привод насоса мощность оказывается ничтожной по сравнению с мощностью турбины (несколько процентов), так что практически вся мощность турбины используется в качестве полезной. Такой цикл был предложен в 50-х годах прошлого века шотландским инженером и физиком Ренкиным и по-

чти одновременно Клаузиусом. Схема теплосиловой установки, в которой осуществляется этот цикл, представлена на рис. 6.7. (На этой схеме показана также возможность перегрева пара в пароперегревателе 6-1, которая в цикле насыщенного пара не реализуется).

Теплота в этом цикле подводится по линии 4-5-6 (СМ. рис. 6.6) в паровом котле ПК, пар поступает в турбину 7 и расширяется там по линии 1-2 до давления Р2, совершая техническую работу /тех-Она передается на электрический генератор ЭГ или другую машину, которую вращает турбина. Отработавший в турбине пар поступает в конденсатор К, где конденсируется по линии 2-3, отдавая теплоту конденсации холодному источнику (охлаждающей воде). Конденсат забирается насосом Н и подается снова в котел (линия 3-4 на рис. 6.6).

Термический КПД цикла Ренкина, естественно, меньше, чем f\t цикла Карно при тех же температурах Г и Гг, поскольку средняя температура подвода теплоты уменьшается при неизменной температуре отвода. Однако реальный цикл (с учетом неравновесности сжатия пара в компрессоре в цикле Карно) оказывается экономичнее.

Теоретически термический КПД цикла Ренкина можно сделать равным КПД цикла Карно с помощью р<;генера-ц и и теплоты, если осуществить расширение пара не по адиабате 1-2, как в обычной турбине, а по политропе 1-


Рис. 6.7. Схема паросиловой уст.чновки: ПК - паровой котел, Т - паровая турбина; ЭГ -электрогенератор; К - конденсатор; Н - насос



7 (рис. 6.8), эквидистантной линии 4-5 нагрева воды, и всю выделяющуюся при этом теплоту (площадь 1-1-7-7) передать в идеальном (без потерь эксергии) теплообменнике воде (площадь 3-3-5-5).

На практике такую идеальную регенерацию осуществить не удается, однако в несколько ином виде регенеративный подогрев воды применяется очень широко и позволяет существенно увеличить КПД реального цикла.

К сожалению, цикл насыщенного водяного пара обладает весьма низким КПД из-за невысоких температур насыщения. Например, при давлении 9,8 МПа температура насыщения составляет 311 °С. При температуре холодного источника, равной 25 °С, т1,к рко = 1--(273 + 25)7(273 + 311) = 0,49. Даль-нейщее увеличение температуры Т\, а значит, и давления pi не имеет смысла, ибо, мало увеличивая КПД, оно приводит к утяжелению оборудования из условий прочности, а также к уменьшению количества теплоты qi, забираемой каждым килограммом воды в процессе испарения 5-1 (из-за сближения точек 5 и / на рис. 6.6 и 6.8 по мере повышения температуры). Это значит, что для получения той же мощности необходимо увеличивать расходы воды и пара, т. е. габариты оборудования.

При температуре, превышающей критическую (для воды /кр = 374,15 °С,


Рис. 6.8. Идеальная регенерация теплоты в цикле насыщенного пара

что соответствует давлению 22,1 МПа), цикл на насыщенном паре вообще невозможен. Поэтому цикл насыщенного пара (регенеративный) применяется в основном в атомной энергетике, где перегрев пара выше температуры насыщения связан с определенными трудностями.

Между тем металлы, которыми располагает современное машиностроение, позволяют перегревать пар до 550- 600 °С. Это дает возможность уменьшить потери эксергии при передаче теплоты от продуктов сгорания к рабочему телу и тем самым существенно увеличить эффективность цикла. Кроме того, перегрев пара уменьшает потери на трение при его течении в проточной части турбины. Все без исключения тепловые электрические станции на органическом топливе работают сейчас на перегретом паре, а иногда пар на станции перегревают дважды и даже трижды. Перегрев пара все шире применяется и на атомных электростанциях, особенно в реакторах на быстрых нейтронах.

Цикл Ренкина на перегретом паре. Изображения идеального цикла перегретого пара в р-, V-, Т, s- и h, s-диаграммах приведены на рис. 6.9 и 6.10. Этот цикл отличается от цикла Ренкина на насыщенном паре (см. рис. 6.6) только наличием дополнительного перегрева по линии 6-1. Он осуществляется в пароперегревателе, являющемся элементом парового котла.

Термический КПД цикла определяется, как обычно, по уравнению r\, = (qi - ~q2)/q>.

Теплота (j, подводится при р = const в процессах 4-5 (подогрев воды до температуры кипения), 5-6 (парообразование) и 6-1 (перегрев пара). Теплота qi, подведенная к 1 кг рабочего тела в изобарном процессе, равна разности энтальпий в конечной и начальной точках процесса: q\ = h\ -hi.

Отвод теплоты в конденсаторе осуществляется также по изобаре 2-3, следовательно, (?2 = /l2 -Лз.

Термический КПД цикла 1),=

= [(/11-Л4) - (Л2-Л:))/(/1-/1з). Если

не учитывать ничтожного повышения температуры при адиабатном сжатии во-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 [ 20 ] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74



ООО «Мягкий Дом» - это Отечественный производитель мебели. Наша профильная продукция - это диваны еврокнижка. Каждый диван можем изготовить в соответствии с Вашими пожеланияи (размер, ткань и материал). Осуществляем бесплатную доставку и сборку.



Звоните! Ежедневно!
 (926)274-88-54 
Продажа и изготовление мебели.


Копирование контента сайта запрещено.
Авторские права защищаются адвокатской коллегией г. Москвы
.